

RIC 2005 Session G1 -- Materials Issues

Research Activities on Materials Aging Management

Michael E. Mayfield, Director
Division of Engineering
Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission

March 8, 2005

Managing Materials Degradation

- Degradation of materials in operating reactors has a long history
- Degradation poses technical and regulatory challenges
 - PWR vessel head penetration (VHP) nozzles
 - PWR reactor coolant pressure boundary (excluding VHP nozzles and SG tubes)
 - BWR vessel, internals and piping
 - Steam generator tubes
- Materials degradation will continue

Managing Materials Degradation

Embrittlement of RPV Steels

Each dot in these atom maps is an atom

Cu P

Unirradiated

Before service in the nuclear reactor, all the copper atoms are uniformly distributed. After service, a high number of ~2-nmdiameter copper-enriched precipitates are present which make the weld brittle.

Fluence: 1.4 x 10¹⁹ n cm⁻² (E >1MeV) Temperature: 288°C.

The composition of the weld from the Palisades nuclear reactor was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mo.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Results from Updated PTS Analyses are Encouraging for a Rule Revision

- Plant used in 1980s PTS study
- Babcox & Wilcox design

- High embrittlement plant
- Westinghouse design

• Combustion Engineering design

Pressure-Temperature Limits Can Create Operational Problems

Managing Materials Degradation

- Materials degradation will continue to evolve
 - Natural consequence of aging reactor materials
 - Temps ≤ 325°C, irradiation flux, aqueous environments
 - New forms of old problems, as well as new mechanisms
- Inspection and monitoring procedures and techniques must also evolve
 - Techniques tailored to known degradation
 - Broad-scope techniques to identify emerging degradation
- Materials data
 - Characterize current and replacement materials for known degradation
 - Scoping experiments to identify new degradation

Summary

- Materials will continue to degrade with time and operation
- Well coordinated NRC program addressing issue
- Industry involvement
- National and international technical communities are involved, and are cooperative
- Programs addressing currently identified degradation
- Research program addressing
 - Potential new degradation mechanisms
 - Inspection and monitoring techniques
 - Mitigation and repair strategies
- Aggressively handling degradation as it emerges